j2ā‰”+1 (jāˆ‰ā„œ) z=x+yj (x,yāˆˆā„œ) z1+z2=(x1+y1j )+(x2+y2j )=(x1+x2)+(y1+y2)j z1z2=(x1+y1j )(x2+y2j )=x1x2+x1y2j+y1x2j+y1y2j2=(x1x2+y1y2)+(x1y2+y1x2)j z*=x-yi (z1+z2)*=z*1+z*2(z1z2)*=z*1z*2 z1
z2
=z1z2*
z2z*2
=(x1x2-y1y2)+(y1x2-x1y2)j
x22-y22
(x2ā‰ y2)
||z||2ā‰”zz*=x2-y2 ||z||hā‰”|zz*|=||(x+yj)(x-yj)||=|x2-y2| ||z||2=Ā±||z||2h ||z2-z1||h=|(z2-z1)(z*2-z*1)|(z2-z1)(z*2-z*1)=z2z*2-z2z*1-z1z2*+z1z*1=(x22-y22)-[{(x1x2-y1y2)+(x1y2-y1x2)j} +{(x1x2-y1y2)+(-x1y2+y1x2)j}]+(x21-y21)=(x22-y22)-2(x1x2-y1y2)+(x21-y21)=(x22-2x1x2+x21)-(y22-2y1y2+y21)=(x2-x1)2-(y2-y1)2||z2-z1||h=|(x2-x1)2-(y2-y1)2| ||z||h=r||z||2h=r2|x2-y2|=r2 l=ršœƒ ||w||h=1||w||2h=1|x2-y2|=1 l=šœƒ x2>y2āŸ¹x2-y2=1y2>x2āŸ¹y2-x2=1 x2>y2 , x>0 āŸ¹w1=coshšœƒ+jsinhšœƒ cosh2šœƒ-sinh2šœƒ=1 A=1+0jB=cosh(š›¼+š›½)+jsinh(š›¼+š›½) A'=cosh(-š›¼)+jsinh(-š›¼)B'=coshš›½+jsinhš›½ ||B-A||=||B'-A'||||B-A||2=||B'-A'||2(cosh(š›¼+š›½)-1)2-(sinh(š›¼+š›½)-0)2=(coshš›½-coshš›¼)2-(sinhš›½+sinhš›¼)2 cosh2(š›¼+š›½)-2cosh(š›¼+š›½)+1-sinh2(š›¼+š›½)=cosh2š›½-2coshš›¼coshš›½+cosh2š›¼-sinh2š›½-2sinhš›¼sinhš›½-sinh2š›¼ -2cosh(š›¼+š›½)+2=-2coshš›¼coshš›½-2sinhš›¼sinhš›½+2cosh(š›¼+š›½)=coshš›¼coshš›½+sinhš›¼sinhš›½cosh(š›¼-š›½)=coshš›¼coshš›½-sinhš›¼sinhš›½ cosh2š›¼=cosh2š›¼+sinh2š›¼=2sinh2š›¼+1=2cosh2š›¼-1 sinh2šœƒ=cosh2šœƒ-1 sinh2(š›¼+š›½)=cosh2(š›¼+š›½)-1=(coshš›¼coshš›½+sinhš›¼sinhš›½)2-1=cosh2š›¼cosh2š›½+2coshš›¼coshš›½sinhš›¼sinhš›½+sinh2š›¼sinh2š›½-cosh2š›¼+sinh2š›¼=cosh2š›¼(cosh2š›½-1)+sinh2š›¼(sinh2š›½+1)+2coshš›¼coshš›½sinhš›¼sinhš›½=cosh2š›¼sinh2š›½+2coshš›¼sinhš›½sinhš›¼coshš›½+sinh2š›¼cosh2š›½sinh2(š›¼+š›½)=(coshš›¼sinhš›½+sinhš›¼coshš›½)2 sinh2(2š›¼)=(2sinhš›¼coshš›¼)2 š›¼ā©¾0āŸ¹sinh(2š›¼)ā©¾0,sinhš›¼ā©¾0,coshš›¼ā©¾1š›¼<0āŸ¹sinh(2š›¼)<0,sinhš›¼<0,coshš›¼>1 sinh(2š›¼)=2sinhš›¼coshš›¼ sinh(š›¼+š›½)=coshš›¼sinhš›½+sinhš›¼coshš›½ x=2 āŸ¹ y=Ā±1 coshš›¾=2 (š›¾>0) dl=|dx2-dy2|dl=|(dx
dy
)2-1|
dy
x2-y2=1x2=y2+1x=y2+1dx
dy
=y
y2+1
š›¾0l=|(dx
dy
)2-1|
dy
=|y2
y2+1
-1|
dy
=|-1
y2+1
|
dy
=1
y2+1
dy
y=tantdy=1
cos2t
dt
ā†’ š›¾0l=1
tan2t+1
ā‹…1
cos2t
dt
=1
cost
dt
=cost
cos2t
dt
=cost
1-sin2t
dt
sint=sds=cost dtā†’ š›¾0l=1
1-s2
ds
=-1
(s-1)(s+1)
ds
=-1
2
(1
s-1
-1
s+1
)ds
=-1
2
[ln|s-1
s+1
|]2
2
0
=-1
2
(ln|2-2
2
2+2
2
|-ln||-1||)
=-1
2
(ln|2-42+4
-2
|-ln1)
=-1
2
ln|22-3|
š›¾0l=š›¾=-1
2
ln(3-22)ā‰ˆ0.88
y=tant ,sint=ss=ycosts=y
y2+1
šœƒ0l=šœƒ=-1
2
[ln|s-1
s+1
|]S0
=-1
2
(ln|S-1
S+1
|-ln||-1||)
=-1
2
ln|S-1
S+1
|
s(y)ā‰”y
y2+1
šœƒ(y)ā‰”-1
2
ln|s(y)-1
s(y)+1
|
šœƒ(0)=0šœƒ(1)=š›¾ šœƒ'(y)ā©½1šœƒ'(0)=1 sinhšœƒ(y)=y x=y2+1šœŽ(x)=x2-1
x
šœ™(x)=-1
2
ln|šœŽ(x)-1
šœŽ(x)+1
|
šœ™(1)=0šœ™(2)=š›¾ šœ™'(2)=10<X<2šœ™'(X)>1 coshšœ™(x)=x 0<šœƒ<š›¾āŸ¹0<šœƒ<sinhšœƒ<1<coshšœƒ<2 šœƒ<sinhšœƒ1<sinhšœƒ
šœƒ
sinhšœƒ
šœƒ
<coshšœƒ
1<sinhšœƒ
šœƒ
<coshšœƒ
1ā©½sinhšœƒ
šœƒ
ā©½coshšœƒ
1ā©½sinhšœƒ
šœƒ
ā©½1
sinhšœƒ
šœƒ
=1
coshšœƒ-1
šœƒ
=cosh2šœƒ-1
šœƒ(coshšœƒ+1)
=sinh2šœƒ
šœƒ(coshšœƒ+1)
=(sinhšœƒ
šœƒ
ā‹…sinhšœƒ
coshšœƒ+1
)
=1ā‹…(0
2
)=0
d
dšœƒ
(sinhšœƒ)=sinh(šœƒ+h)-sinhšœƒ
h
=coshšœƒsinhh+sinhšœƒcoshh-sinhšœƒ
h
=coshšœƒsinhh+sinhšœƒ(coshh-1)
h
=(sinhh
h
coshšœƒ+coshh-1
h
sinhšœƒ)
=1ā‹…coshšœƒ+0ā‹…sinhšœƒ=coshšœƒ d
dšœƒ
(coshšœƒ)=cosh(šœƒ+h)-coshšœƒ
h
=coshšœƒcoshh+sinhšœƒsinhh-coshšœƒ
h
=coshšœƒ(coshh-1)+sinhšœƒsinhh
h
=(coshh-1
h
coshšœƒ+sinhh
h
sinhšœƒ)
=0ā‹…coshšœƒ+1ā‹…sinhšœƒ=sinhšœƒ d
dx
(coshx+sinhx)=sinhx+coshx
coshx+sinhx=excoshx-sinhx=e-x coshx=ex+e-x
2
sinhx=ex-e-x
2
ex=āˆžāˆ‘n=0xn
n!
e-x=āˆžāˆ‘n=0(-x)n
n!
coshx=āˆžāˆ‘n=0x2n
(2n)!
sinhx=āˆžāˆ‘n=0x2n+1
(2n+1)!
ejšœƒ=āˆžāˆ‘n=0(jšœƒ)n
n!
ejšœƒ=coshšœƒ+jsinhšœƒ ||w||h=1w1=ejšœƒ (x2>y2,x>0)w3=-ejšœƒ (x2>y2,x<0)w2=jejšœƒ (y2>x2,y>0)w4=-jejšœƒ (y2>x2,y<0)w=Ā±ejšœƒ or w=Ā±jejšœƒ ||w||h=rw=Ā±rejšœƒ or w=Ā±rjejšœƒ