\begin{eqnarray*}
& \vec{p} =( x,y,z)\\
& \vec{f} =( c,0,0) \ ,\ \vec{f'} =( -c,0,0)\\
& | | \vec{p} -\vec{f}| -| \vec{p} -\vec{f'}| | =2a\\
& | | ( x-c,y,z)| -| ( x+c,y,z)| | =2a\\
& \left| \sqrt{( x-c)^{2} +y^{2} +z^{2}} -\sqrt{( x+c)^{2} +y^{2} +z^{2}} \right| =2a\\
& \left(\sqrt{( x-c)^{2} +y^{2} +z^{2}} -\sqrt{( x+c)^{2} +y^{2} +z^{2}}\right)^{2} =4a^{2}\\
& ( x-c)^{2} +y^{2} +z^{2} -2\sqrt{\left(( x-c)^{2} +y^{2} +z^{2}\right)\left(( x+c)^{2} +y^{2} +z^{2}\right)} +( x+c)^{2} +y^{2} +z^{2} =4a^{2}\\
& 2x^{2} +2y^{2} +2z^{2} +2c^{2} -4a^{2} =2\sqrt{\left(( x-c)^{2} +\left( y^{2} +z^{2}\right)\right)\left(( x+c)^{2} +\left( y^{2} +z^{2}\right)\right)}\\
& x^{2} +y^{2} +z^{2} +c^{2} -2a^{2} =\sqrt{\left(( x-c)^{2} +\left( y^{2} +z^{2}\right)\right)\left(( x+c)^{2} +\left( y^{2} +z^{2}\right)\right)}\\
& \\
& p^{2} =x^{2} +y^{2} +z^{2}\\
& A := c^{2} -2a^{2} \\
& B := y^{2} +z^{2} \\
& p^{2} +A=\sqrt{\left(( x-c)^{2} +B\right)\left(( x+c)^{2} +B\right)}\\
& p^{4} +2Ap^{2} +A^{2} =( x-c)^{2}( x+c)^{2} +B\left(( x-c)^{2} +( x+c)^{2}\right) +B^{2}\\
& p^{4} +2Ap^{2} +A^{2} =(( x+c)( x-c))^{2} +2B\left( x^{2} +c^{2}\right) +B^{2}\\
& p^{4} +2Ap^{2} +A^{2} =\left( x^{2} -c^{2}\right)^{2} +2B\left( x^{2} +c^{2}\right) +B^{2}\\
& \\
& \left( x^{2} +y^{2} +z^{2}\right)^{2} +2\left( c^{2} -2a^{2}\right)\left( x^{2} +y^{2} +z^{2}\right) +\left( c^{2} -2a^{2}\right)^{2}\\
& = x^{4} -2c^{2} x^{2} +c^{4} +2\left( y^{2} +z^{2}\right)\left( x^{2} +c^{2}\right) +\left( y^{2} +z^{2}\right)^{2}\\
& \\
& x^{4} +y^{4} +z^{4} +2\left( x^{2} y^{2} +y^{2} z^{2} +z^{2} x^{2}\right) +2\left( c^{2} -2a^{2}\right)\left( x^{2} +y^{2} +z^{2}\right) +c^{4} -4a^{2} c^{2} +4a^{4}\\
& = x^{4} -2c^{2} x^{2} +c^{4} +2\left( x^{2} y^{2} +z^{2} x^{2}\right) +2c^{2}\left( y^{2} +z^{2}\right) +y^{4} +2y^{2} z^{2} +z^{4}\\
& \\
& x^{4} +y^{4} +z^{4} +2\left( x^{2} y^{2} +y^{2} z^{2} +z^{2} x^{2}\right) +2c^{2}\left( x^{2} +y^{2} +z^{2}\right) -4a^{2}\left( x^{2} +y^{2} +z^{2}\right) +c^{4} -4a^{2} c^{2} +4a^{4}\\
& = x^{4} +y^{4} +z^{4} +2\left( x^{2} y^{2} +y^{2} z^{2} +z^{2} x^{2}\right) +2c^{2}\left( -x^{2} +y^{2} +z^{2}\right) +c^{4}\\
& \\
& 2c^{2} x^{2} -4a^{2}\left( x^{2} +y^{2} +z^{2}\right) -4a^{2} c^{2} +4a^{4} = -2c^{2} x^{2}\\
& \\
& 4c^{2} x^{2} -4a^{2}\left( x^{2} +y^{2} +z^{2}\right) -4a^{2} c^{2} +4a^{4} =0\\
& \frac{c^{2} x^{2}}{a^{2}} -\left( x^{2} +y^{2} +z^{2}\right) -c^{2} +a^{2} =0\\
& \frac{\left( c^{2} -a^{2}\right) x^{2}}{a^{2}} -y^{2} -z^{2} =c^{2} -a^{2}\\
& \frac{x^{2}}{a^{2}} -\frac{y^{2}}{c^{2} -a^{2}} -\frac{z^{2}}{c^{2} -a^{2}} =1\\
& b^{2} := c^{2} -a^{2}\\
& \\
& \frac{x^{2}}{a^{2}} -\frac{y^{2}}{b^{2}} -\frac{z^{2}}{b^{2}} =1\\
\end{eqnarray*}